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Cockcroft Institute Postgraduate Lectures
Numerical Methods and Lattice Design

Lecture 2: Monte Carlo Methods and Random Sampling

Hywel Owen

School of Physics and Astronomy, University of Manchester




Yy
er

The Universit
of Manchest

MANCHESTER

1824

The Course Syllabus and Projects

. Recap on programming languages for physics; MATLAB and Python; summary of commands;
. Introduction to numerical computing; errors in computer calculations;

. Numerical integration methods; Euler's method; higher-order methods;

. Precision vs. accuracy; validation;

. Phase space; conserved quantities;

. Introduction to mappings and nonlinear systems;

. Example: Methods for solving the linear and non-linear simple harmonic oscillator.

. Introduction to Monte Carlo methods; Monte Carlo integration; classical problems;
. Pseudorandom and quasirandom sampling; methods of sampling; generation of distributions;
. Particle transport simulation; nuclear cross sections; particle histories; applications of Monte Carlo transport;

. Example: Simulation of penetration of neutrons through shielding.

. From mappings to linear optics; the concept of lattices;

. Transfer matrices and periodic solutions; propagation of linear optics parameters;
. Classic optical systems: the FODO, the double-bend achromat;

. Matching and optimisation; penalty/objective functions;

. Hill-climbing methods: Cauchy's method, Nelder-Mead, simulated annealing;

. Variables and constraints; under- and over-constrained problems;

. Example: MAD8 matching of FODO Twiss values;

. Multiple-configuration methods; genetic algorithms and evolutionary algorithms;
. A bestiary of codes; choosing the right code;

. Common pitfalls;

. Example: Particle tracking in MADS;
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Steps in a Model Simulation

Physical Computed

Algorithm —

Phenomenon Solution
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(a) Low accuracy (b) Low accuracy (¢) High accuracy (d) High accuracy
Low precision High precision Low precision High precision

The accuracy of a simulation is the degree of
closeness of estimates of a quantity to their actual
(true) value.

The precision of a simulation, also called
reproducibility or repeatability, is the degree to which
repeated simulations under unchanged conditions
show the same results.
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Determinants of Accuracy and Precision

e Modelisation Error

Discretisation Error

Step Sizes
e (Quantization

Computing Error
 (numerical precision)
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Errors in the Model of the Simple Harmonic Oscillator

Modelisation Error This is really important

— Restoring force truly linear?
— Damping force truly linear?

— Knowledge of the actual k, m and b in the model

* Discretisation Error
— Evaluation is only carried out at specific times
— The integration method uses those times to determine the step size

* Computing Error
— Numerical precision
— Truncation when using approximate formulae, e.g. series expansions
— Truncation of constants
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Monte Carlo Integration

Integration over an interval can be written as an average:

2

S = / f(x)dzr = (zg —x1) < f(x) >
|
which can also be written as:
N
1
S o (wp — w1) Z; flz;)

Writing this as an algorithm, we may say:
(T2 — z1)u; + T4

|
SN = (z2 — ml)NZfz’
i=1

or, progressively for each sample j:

S~8; = ($2—$1)N



Yy
er

MANCHESTER
1824

(Crude) Monte Carlo Integration

Consider f(x) =xcosx + 4sinx

The Universit
of Manchest

o . . . . .
Regular (trapezium) integration (30pts)

Al

, , , , - ,
0 1 2 3 4 5
X

27
In this particular case, we know analytically / rcosx + 4sinzdr =0
0 . . .

4l

N

For n=10"4 random points, we converge
on the correct integral, as we should.
(Integral performed 100 times)

6

Monte Carlo mtegratlon (30 pts)
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Pathological Cases

g(x) = cos 30x (30 pts)
BUTTTTTIORNN T
ol LR PPV OVLOVEL LT R RN

Pathological behaviour can also occur with more complicated

functions, which you may encounter without realising, e.g. in
particular things like following particle interactions in matter.

Generalisation is Monte Carlo method, where we evaluate some
complex function f(x) by repeated evaluation.
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Finding the Area of a Circle: Hit-or-Miss Monte Carlo

1

0.5

Pick two random numbers
between -1 and +1

r2 =% 492 < R
Determine for each pair whether

WW<M=%

So we need some way of generating the random numbers....
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Random Numbers

1. Thereis no such thing as a ‘random’ number generator.

2. ltis generally a bad idea to use the random number generator that
comes with your favourite compiler. Using the code in Numerical
Recipes is particularly bad.
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Buffon’s Needle
e Buffon was a noted naturalist who

wrote a 36-volume Natural History,
and from his studies observed that
similar environments have distinct
species (Buffon’s Law) — posited that
there therefore must have been
improvement or degeneration of pre-
existing species.

e A precursor to Darwin, who credited
Buffon in the foreword to the Origin
of Species.

* Also a contributor to early probability
theory.

e The Buffon’s Needle method is

Georges-Louis Leclerc, Comte de Buffon named after him.

(1707-1788)
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Buffon’s Needle: Statement of the Problem

Buffon posed the following question:

Suppose we have a floor made of parallel
strips of wood, each the same width t, and
we drop a needle of length | onto the floor.
What is the probability that the needle will
lie across a line between two strips?

We generate (physically drop) many
random samples, and measure the
answer.

Analytically, we can show that if t>/, then

for n needles dropped with h of the

needles crossing lines, the probability is:
h 2l

n_ tr’

We can invert this equation to give:

2In

E.

In other words, we can drop some needles

onto strip flooring, and from it get an
estimate for m.

w =




Yy
er

The Universit
of Manchest

MANCHESTER
1824

Trying out Buffon’s Needle
*  Mario Lazzirini did the experiment
manually in 1901, manually throwing the
needle 3408 times. In his case he used
5)
[ = —t
6

e for which the probability the needle will
cross a line is
5)
P=—
37
* For nthrows giving h crossings, we may
estimate m as
L 2on
~ 3h

T
e Lazzirini found h = 1808, giving
355

T —

113

e (thisis actually a slightly suspicious result:
try to work out why)
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Monte Carlo simulation

Buffon’s Needle is an example of a
Monte Carlo approach:

To find an approximate solution to a
problem, we throw random samples at it
and interpret the result we obtain.

The name Monte Carlo was coined by
Stanislaw Ulam, who also incidentally Stanislaw Ulam
(with Edward Teller) tried to patent the (1909-1984)

design of the hydrogen bomb.

Ulam used this approach (along with :
Enrico Fermi) during the Manhattan ; =y
Project, and chose the name as his uncle
used to borrow money to go gambling at
the Monte Carlo casino.

The casino at Monte
Carlo
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Problems with the Monte Carlo Method

 Of course, in order to perform a
Monte Carlo simulation, we need a
reliable source of random numbers.

* If not, then our answer could be

wrong.
* For example, what if — when we T~ § ﬁ
throw our needles — we unwittingly 3 h

put in a bias such that they more
predominantly in line with our strips?

* If so, then we will systematically over-
estimate .

* In computer simulation, as well as
physical simulation, we need a
reliable way of generating random
numbers.
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Some methods of generating random numbers

One way of generating random
numbers is by using some physical
process that appears to be truly
random.

Francis Galton proposed using dice.

(By the way, Galton also drew the
first weather map, did the first
scientific studies of fingerprinting,
and coined the terms eugenics, and
nature versus nurture.)

One simply throws a die many times,
and gets a uniformly-distributed
random integer between 1 and 6.
Uniform means that each number
(1,2,3,4,5,6) has an equal probability
of being generated as a result.

Francis Galton
(1822-1911)
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Handling Little Balls

* Inthe national lottery, they use 49
little balls (80g weight each).

* Over all machines it is thought to be
random, but ball number 38 does
come up most often.

* The Royal Statistical Society said ‘Ball
number 38 should be physically
examined’, after an analysis by the
University of Salford Centre for the
Study of Gambling.

e Apparently, the lottery people
examine their balls each draw
anyway....

Top 20 balls - Number of times each ball has been drawn up to Sat 10/05/08

260
g 250
§ 240
= 230

220
£ 210
s 200
p 190
£ 180
g 170
= 180

199 195 195 197 485194134 194 183 190 .. (0 -

38 25 31 43 1M1 6 23 44 47 12 30 33 45 9 48 22 40 10 28 42

Ball Humber

I Spread of ball counts grouped in to bins of 4 Also, the equivalent Normal
distribution is included as at draw number 1292 dated Sat 10/05/08

Equivalent Normal Distribution

—_ -
o N
! |
T 1

O N = O
———

154- 168- 162- 166- 170- 174- 178- 182- 186- 130- 134- 198- 202- 206- 210- 214- 218- 222- 226- 230-
157 161 165 189 173 177 181 185 189 193 197 201 205 209 213 217 221 225 229 233

Number of times drawn . grouped into bins of 4

No. of different balls drawn /bin range
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Other physical methods for generating random numbers

*  Other physical methods are possible,
which are more suited to use on
computers —i.e. they generate random
numbers faster.

* Electrical shot noise

* Thermal noise

* Avalanche noise (e.g. from a Zener diode)
* Nuclear decay/Geiger counter

* Atmospheric noise

*  Drift between two clocks on a
microprocessor (most hardware RNGs
use this approach

* However, they all suffer from the same
two problems:

1. They suffer from systematic bias (often
hidden or progressive)

2. They are non-repeatable, precisely
because they are random.

B . . A v bl
* Example of systematic bias: Electronics
e The dated bits of paper thrown into a bin Model RM-80

used for the Vietnam draft were biased Computer Interface
towards dates at the end of the year. ) )
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Why do you want true random numbers anyway?

e Actually, for most simulation purposes you don’t want true random numbers.
What you want are sequences which have no correlation with the process you

are simulating.
* Thisis a subtle concept, which we will come back to later.

 To allow repeatability, which allows you to debug your simulation, and to repeat
your great result so you can show someone later, people usually use pseudo-
random numbers.

* ‘The generation of random numbers is too important to be left to chance’ -

Robert Coveyou, Manhattan Project, and one of the pioneers of pseudo-random
number generation.

TOUR OF ACCOUNTING |§ | ARE

E NINE NINE <| vou THAT'S THE
OVER HERE $ NINE NINE i sune PROBLEM
WE HAVE OUR 3 NINE NINE Bl ThaTs WITH RAN-
RANDOM NUMBER |§ \ ¢| RANDOM?  DOMNESS:

: YOU CAN

GENERATOR.. \ :

£ 3 & NEVER BE

) E 5 o SURE.
o o § o

| a % : - 3.4 | o

Copuright 32 2881 United Feature Syndicate,

Ihec.
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Pseudo-Random Numbers

* A pseudo-random number generator
(PRNG) produces a sequence of numbers
that exhibits statistical randomness. The
output sequence is unbiased, i.e. the
statistical measures are what you would
expect from a random variable.

* However, the sequence is entirely
deterministic. Given any number in the
sequence, you can generate the next
number. Therefore, you can repeat the
entire sequence given a starting number.
This number is known as the seed.

* The quintessential example of the PRNG is
the Linear Congruential Generator (LCG),
invented by Lehmer:

Xnt1 = (aX,, +¢) mod m
* which has the following parameters:

* Themodulus: (< m
* The multiplier: 0 <a<m
* Theincrement: .-,

e The seed: 0< Xy<m

Derrick H. Lehmer
(1904-1991)



Yy
er

The Universit
of Manchest

MANCHESTER
1824

Features of the LCG

An LCG sequence repeats over a full period
m as long as:

— cand m are relatively prime

— a-1is divisible by all prime factors of m

— a-1is a multiple of 4 if m is a multiple of 4
(this is the Hull-Dobell theorem)

With these parameters, we can draw a
random number from 0 to 1 of precision m
using the formula:

Xn

Sp = —
m

The LCG formula

Xnt1 = (aX,, +¢) mod m

0<m
0<a<m

D<e<m
0<Xyo<m
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The LCG as the positions of the hour hand on a clock

Xp+1 = (aX, +¢) mod m

0<m m =12
0<a<m a=1
D<c<m c=25

0<Xy<m
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It seemed like a good idea at the time

e The RANDU algorithm s a
particularly bad implementation:

Vi1 = (65539V;) mod 2*

e (it was chosen because it runs fast)

e But actually, all LCGs produce points
that lie on hyperplanes (Marsaglias’

theorem) — there are correlations
between the points. Looking at these
planes is known as the spectral test.

* But LCGs are still widely used...

Compiler a c

Numerical Recipes 1664525 1013904223

GNU Compiler 69069

ANSI/IBM C 1103515245

Borland 134775813

Microsoft VC++ 214013 2531011

Xnt1 = (aX,, +¢) mod m
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Creating Non-Uniform Distributions

* LCGs produce a sequence of Xy = (aX, +0)
numbers which is uniformly

distributed. . - ..L{.,,?ifofm Distribution
But how do we produce numbers 08 s
which don’t have a uniform A
distribution?

e For example, a Gaussian LR R T
distribution? 02 i

O'O_'.-.-‘ -"::- ’_'-I."‘. . il ...' e Seroe, .
0 200 400 600 800 1000
J
Uniform Distribution
0.3} ] — — . :

mod m

. L
%

06

R/

. . ee o C e a . e
. . PR
.. M * -
3, .

0.4F

0.2r 1 307 ] =N M

Pix]

0.1¢

0.0k’ —

10¢

00 02 04 06 08 10
RI/]
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To create a distribution whose PDF is
that of a normal distribution, we
recall that independent, uniform
random variates — when combined —
tend to a normally-distributed
variate.

i.e. we can pick some uniformly-
distributed numbers and sum them
to get a Gaussian-distributed one.

The important question is: how
many numbers do | need to combine
to get a decent Gaussian variate?
The answer is 12

But even 2 works pretty well near
the mean
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O L] [ ] [ ] g -
+ Approaching the Central Limit
¥
S
- 10000 ] 14000F
© 12000}
p= 10000}
kS = w 8000}
A A~ 6000L
4000}
2000}
dP[z] |z 0<z<1 ok
dv  |2-z, l<z<?2 ' ' x . ' x
15000-l 6000-I
5000F
10000 4000F
= o
~ & 3000
5000} 2000t
1.2 1000
x
T = 3 _(z-3)% 1<z<2 00
13 —2)? 2<z<3 x x

If we use n=12 the algorithm is very simple!
Any random variate can be the input — a uniform one is simply convenient
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The Box-Muller Transformation

* The Box-Muller method is a handy
way of generating Gaussians using
two uniformly-distributed numbers.

* The result is a normal distribution
with unit mean and standard
deviation.

* Other means and s.d.’s can be

generated simply: X, =0Z;+pu

Box-Muller Gaussian

Zy = Rcos(©) = \/—2InU; cos(2nl)
Zy = Rsin(©) = /=2 In U; sin(270,).

Pair
Up,Us

Pair
> Z1722

Box-Muller only works for Gaussians, but is
handy because the formulae can be re-cast
for very fast computation.

(Polar method and Marsaglia’s Polar
Method)

Box, G. E. P. and Muller, M. E. "A Note on the Generation of Random Normal Deviates." Ann. Math. Stat. 29,

610-611 (1958)
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Inverse distribution sampling/cumulative distribution sampling

The inverse distribution method is quite simple — integrate the probability density function
of the distribution you want to sample from, and then invert it to form the inverse
cumulative distribution function. Multiply a uniformly-distributed variable by the inverse
CDF to get a distribution distributed according to your original PDF.

04

0.3

0.2

0.1

0.0

80¢

60r

20¢

40}

/

/

>

4

erf !(z) = !

"

Inverse CDF Gaussian Distribution

T+ —z° +

| lore o
10320

* 5306020

CDF'[x]
bR N o an

0.0 0.2 04 0.6 0.8 1.0

cdf 1 (z) = V2erf (22 — 1)

* 182476%00"

o 348077 ‘11+___)_

Works just great for a Gaussian (again....)
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Sampling the Exponential Distribution

 Sampling functions is straightforward, provided the inverse CDF can be found.

1.0 1.0 3.5
0.8 0.8 3.0
_25
— >
0.6 =06 =50
% W
O

%0_4 0.4 8 1'5<

. |

O‘Oo 1 2 3 4 0'00 7 P 3 y %% 0.2 0.4 06 'o08 1.0

X x - X
pdf(z) = e~ cdf(z) = / pdf(z) =1—¢€7" cdf'(2) = —In(1 — 2)
0
_ Inverse CDF Exponential Distribution

150 |
="M This is really important! Pay attention here!

50 -

0 —’_H_ﬂ_h I e —
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Exponential Distribution via Normal and Antithetic Variates

Inverse CDF Exponential Distribution

cdf 1(z) = —log(1 — z)

! x; = —log(1l — u;)
__—’_H‘Frhm
T 2 3R[j] 4 5 6 T; = — log(uz)
Plx] = e %/A

For mean free path A

s; = —Alog(uy)
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22 Do the correlations matter?

e

‘= 2 Theanswerisyes.... and no. It all comes down to the spatial periodicity
ag of the random number sequence.

—%5s The answer is definitely yes if the spatial periodicity 2 i, —rrrmm

physical process of interest.

~
wn
—

 Example: Microbunching gain Ry,
e PRSTAB7,

074401 (2004) |
Energy AE G=by/ b,>>1

L % —]
~~—~ V'V VL

[&,]
T

N
3

Aymz per 1% initial bunchin

o

»
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%+ SDL Zero-Phasing Experiment
25
(-
55 (W. Graves et al.)
A SS
RF zero-phase | 14phase=-90, L3 phase = +90,
time profﬂe amplitude varies amplitude varies
(adds known (removes chirp
chirp) from L2)

L2 phase varies, L1 phase = 0,
amplitude amplitude
constant constant

Chi varies f
65 MoV N Chicare vaies from h
Energy K \ /

spectrometer n L
(S R S— ﬂ [ [ S—
1.4 1.3 1.2 1.1
X (E) profile E E E E
% -all— /4 >
) Z Z Z Z
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?4?7’, Real Particles vs. Macroparticles _
qﬁ%- Simulations of microbunching fi h §
S % rely on using macroparticles é b
E?_ rather than actual particles. § 5
= o — The reason is typical bunches %2-5
contain ;E 0E

— N~10° particles, too many for

a code.

2500 " ' — ' : 0.0125%
| C“ I | 0.025%

2000} I \ | { |
. = N I N i 0.050%
* If the particles are non- P U | N | N | T | O P
interacting then LCGs are usually P00 | TN AR | R A XX
5 A N A 0.500%

O

ok —only the statistical measures 0ol 7 N7 WY N N |
are important. - |

o —O.IOZ —OI.O1 O.EJO O.|01 O.IO2
t (ps)
* However, if the physical process — ric.s (cutw it il deniy or FEROIL 030
of interest cares about spatial central 100 bins. S
periodicities, then we have to be M. Borland, “Modeling of the microbunching

instability" Phys. Rev. S.T.A.B. 11, 030701 (2008)
careful....
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The von Neumann Method
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John von Neumann was a pioneering
mathematician. He also patented a
design for an atomic bomb (with
Klaus Fuchs), and proposed Kyoto as
the target for ‘Fat Man’. Ironically,
he died of cancer probably caused by
watching the atomic tests at Bikini
Atoll.

He also invented the field of cellular
automata, which are used for
cryptography and pseudo-random
number generation.

Here, we look at his elegant method
for generating a sample drawn from
an arbitrary distribution, the
rejection method.

Janos Lajos Neumann/
John von Neumann
(1903-1957)

PHYS20762 Lecture 9
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May 21, 1947
. Stan Ulam
M,rst Ooffice Box 1663
Santa Fe
, New Mexico
Dear Stan
Thanks for your letter of the 19th, 1 need not tell you that Klaps
and I are loolkdng forward to the trip and vigit at Los Alamos this Summer
I have already received the necessary papers from Carson Mark. I filleq
ry
out and returned mine yesterday; Klarits wily follow today.

of Manchest

I am very glad that Preparations for the randop Miimbers work are to
begin soon. In this Connection, 1 would like to mention thig,
that you have several randonm number distributions, each equidigty

an distributed in
2,1 (x 2, -/,V(r), {(z ')'/ "7+ Assume that yoy wapt one with the

distribution function (density) 7/ { £) o, £y £ ‘). One way to

form it 1s to form the cumulative distribution Tunction: 205/ = ff ‘Z{ S)=¢
to invert it /Z/’(l': g X‘\g_ ’£) > and to fornp g"___ L(x ‘)
with this % &), or some approximant Polynomial, Thig is, as I see, the

method that you have ip mind,

4n altemative, which works if f and all values of f 43 J 1ie in

0, 1, 1s this: Scan pairg Xf;y' and use or reject Xyt

i . '
to whether y < 7{ (x')  or not. In the first case, put £ 9= x
-|| in the second case form no £ ¢ at that step,

The second method may O¢casionally pe better than the first one. 1n
; e.g., form random pairg
T feen Xy ¥ = e x
with x equidistributeq between 0° and 300°, The obvious ¥ay consists of
using the sin - €S - tables (with interpolation). This is clearly closely
related to the first method, This is an alternative

Pprocedure;
- 2 ¢ = /= #2 -
Put )E JEFT =/ - e 2 7 ZL - Z(? y Y

¥ith y (which is ;f) equidistributed between ° and 180°. Restrict ¥ to 0% 459,
Then the§17 will have to be replaced randomly by 7, £ and again by 4 f,i- .

This can be done by using randonm digits 0 .., 7, It is also feasible with

| PHYS20762 Lecture 9
AT, S T T —
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The von Neumann Rejection Method

* The rejection method is actually very
simple to understand.

* We draw a uniform variate sample Z;

 from a uniform distribution with bounds
corresponding to the range of values we
wish to draw samples from the PDF, Ul(a,b)

* We then calculate the PDF value for this Z;

* and compare this value with another
uniform variate y; drawn from U(0, 1)

* If f(z;) <y; thenkeep z;

« Theresulting set {z;} is distributed
according to the PDF f(x)

P(z)
A

. /M \/ \

a X

AN
b L

A very elegant method, that is only limited by
having to have limits a and b (for
computational efficiency reasons)

In regions where there the PDF is close to
zero, a large proportion of samples are
rejected. This can be fixed by rescaling f ()

PHYS20762 Lecture 9
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Making a Modulated Gaussian
P(z)
A Modulated Gaussian
0.6 | ' '
0.5 I

/

a x

Yj /A = |
VAVIRE-I
f(z;) 7 So2 i
AN |
] b | 2 0 2 4

X R[J]

* The implementation works....

* but remember that the underlying pseudorandom samples can still be
correlated if they are drawn using an LCG algorithm.

PHYS20762 Lecture 9
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Rejection isn’t that hard to bear...

* Actually, you already saw the rejection method in action in a simpler case.

1.0F= " e

.'- .»-'- ] r2:$2+y2<R2

0.5} ft . . .

I [P(7‘)<R]=E

—0.5 e ° ° g . o

M~

K . 1100 points

-1.0kL M) bl B LI 38

X 3.7¢

3.6}

35¢

Estimated 7 Value

50 100 500 1000 5000 1 x 10°
Number of Points
PHYS20762 Lecture 9
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=+, Complex distributions with rejection sampling
o U
>
2
=,
E:
=
ALy} £
[x,yb_5 =

215 ~10 -05 00 06 10 156
X [mm)]

* A cathode emission with a hole in it. Easy with rejection sampling.
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Replacements for the LCG Method

* | hope I've convinced you that using LCGs is usually flawed. There are better
alternative methods, but of course you should be careful with those too.

* |'ll just mention two popular ones.
* Marsaglia-Zaman (Multiply With Carry):

n>r

—_— )

Alp—r = Cn—lJ
b )

Trp = (aTp—r + Cp—1) mod b, ¢, = {

 Mersenne Twister (Matsumoto & Nishimura):

e (algorithm is hard to write down, but is an n-dimensional shift register with extra
bits).

* Generally, the more complicated the random number generator, the more samples
you need to pass tests of randomness.

 To getround problems with generating numbers, you can get them on a CD!

* For more information, please look at publications by Marsaglia, and at
* http://www.stat.fsu.edu/pub/diehard/
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Metropolis-Hastings Markov Chain Monte Carlo

The Universit
of Manchest

A final method you might see.

Based on the idea of Markov
chains, in which each element in
a sequence is only dependent on
the previous element —a random
walk.

W. Hastings extended Nick
Metropolis’ method, which takes
a random walk dependent on the
PDF — it removes the limits on Andrey Andreyevich Markov
the distribution that the von (1856-1922)
Neumann method has.

Despite the Russian Revolution, nothing
particularly interesting happened to Dr.
Markov

W.K. Hastings, Biometrika 57, 97-109 (1970) — one of only three papers he published in his career.
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One implementation of MCMC method

T, * Very general, but quite
inefficient, especially with a poor

l starting point; generally, the
initial points are left out while the

v =xj+kU(=1/2,1/2) algorithm ‘finds’ the middle of
l the distribution.
Pl = Wioduiated Gaussian T
/ . L I l
Pl > Ple] or UI0.1] < iy 2 Ny

<
pd
PIXINIR]
o
N

/ . — .
Tj41 =T LTjt1 = Ty

Note that we don’t need to draw our step
from a uniform distribution. We can draw it 0.0k -
from any symmetric distribution.

X R[J]
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Clumpiness
Actually, pseudorandom numbers are actually not so good for some
things.
A pseudorandom macroparticle distribution will exhibit more

‘clumpiness’ than the real distribution.

Apart from increasing the macroparticle number and looking for
convergence in the simulation results (a brute force method), we can
think of other ways of making samples than pseudorandom ones, that
have:

1. The correct statistical properties (they match the real population)

2. They lack correlations that influence the simulation

3. They are more uniform — they are low-discrepancy sequences

Low-discrepancy sequences are termed quasi-random. Simulations
based on quasi-random are called quasi-Monte Carlo methods.

A formula for discrepancy is complicated, but does exist.
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In 1935 Johannes van der Corput asked himself how to progressively fill a
unit interval with a sequence of numbers. This is the van der Corput
sequence, an example of a low-discrepancy sequence.

Easy to write down. This one is in base 2:

1131537 1 9 5 13 3 11 7 15

2°474’8’8'8'8716’ 16716716 16’ 16’167 16" "~

The formula is a bit tricky, but is based on using binary digits. Base
3,4,5.... are also possible.

! 1 1 L 1 1 L L 1 1 1 1 i " 1 1 " 1 1 J
Base 2 . 0.2 0.4 hd 0.6 08 1.0

Base 3 —— . . o

1 1 " 1 1 " " 1 1 " 1 1 J
0.0 02 0.4 0.6 08 1.0
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Halton Sequences

A Halton sequence is just a series of
points in n dimensions, where each
coordinate is a van der Corput
sequence.

As you can see, the radices for each
axis must be relatively prime,
otherwise there will be correlations.

Once you have that, you have a nice,
uniform distribution, although of
course it still has a strong spatial
frequency determined by the radices.

Again, you need to be careful,
depending on the application. Halton is
good for space charge, but can be bad
for microbunching.

Why should you care about the Halton
sequence?

Because it is used in pretty much every
quiet start routine (e.g. Elegant), used
for space charge, FEL modelling etc.

vl

i

Halton Sequence, Radices=2,3

1.0F T

08_ :....- . . ‘e . ce e RN .

0.4-’.;.'",'.~;".~.ﬁ TR IR

0.2F " e e L

0.0

02 04
X[ /1

0.6

08

1.0

1.0f

Halton Sequence, Radices=4,8

02 0.4

X[J]

0.6

08

70

1.0
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Microbunching again

3103} ' ' ' ' ' '

e Similarly to the banding that you can 24103}

have with the LCG, poor choices of o)

the radices can give rise to banding, g)

depending on the particle number. ~ °
* Avery important point is that if you oy

populate e.g. a 6D distribution with -241073¢ R

samples, you should not do it . ., L . gy

pairwise in each plane:

/ /
{xﬁxj} {yj7yj} . A L L
. . . FIG. 2. Illustration of banding in longitudinal phase space
* otherwise there will be correlations when Halton radices of 11 and 13 are used for time and

between e.g. =, and i Instead, momentum coordinates, respectively. Banding becomes less

evident as the number of particles is increased and when the

you should construct a joint ratio of the radices is far from unity.
/ /
sequence of {%j, %}, Y5, Y5}

t (ps)

M. Borland, “Modeling of the microbunching

) instability" Phys. Rev. S.T.A.B. 11, 030701 (2008
* The moral of the tale is to look at the y ( )

distributions you are generating.
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There are lots:

Hammersley

Faure

Neiderreiter

Sobol

Scrambled van der Corput/Halton

I’'ve created a Mathematica notebook that you can play with to get an idea of how they all

work.

y [mm]

Cathode with Hole, Pseudorandom

215 ~10 05 00 05 10 15
X [mm)]

y [mm]

Cathode with Hole, Quasirandom Halton

215 ~10 05 00 05 10 15
X [mm)]
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Summary of Random Number Generation

 Random numbers are a big field in themselves, with many issues
unresolved.

* Depending on the simulation you are doing, different types of
distribution may be needed.

 The LCGs in most compilers have a number of deficiencies that are
important in accelerator simulations.

 More generally, you should be aware of the issues in using distributions,
both pseudorandom and quasirandom.



