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What is this course?
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This is a course on Numerical Methods:

— The use of algorithms and numerical methods to perform data analysis and
simulation in support of experimental and theoretical physics

* There are 3 pillars of physics:
— Theory
— Experiment

— Simulation

* We will concentrate obviously on particle accelerators
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The course website:
— http://theory.physics.manchester.ac.uk/~hywel/teaching/cockcroft/

People:
— Hywel Owen (hywel.owen@manchester.ac.uk)

— Bruno Muratori (bruno.muratori@stfc.ac.uk)

Course structure:
— 6 lectures: Sep 1/Sep 22/Sep 24
— 3 projects: Oct 29-31

You will need to do some background reading and work before the projects

This course is deliberately a smorgasbord, with some later focus on practical issues
in lattice design

— The idea is to expose you to the important ideas to keep track of

We assume you will do some other study/course on linear optics (but | will recap!)
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The Course Syllabus and Projects

. Recap on programming languages for physics; MATLAB and Python; summary of commands;
. Introduction to numerical computing; errors in computer calculations;

. Numerical integration methods; Euler's method; higher-order methods;

. Precision vs. accuracy; validation;

. Phase space; conserved quantities;

. Introduction to mappings and nonlinear systems;

. Example: Methods for solving the linear and non-linear simple harmonic oscillator.

. Introduction to Monte Carlo methods; Monte Carlo integration; classical problems;
. Pseudorandom and quasirandom sampling; methods of sampling; generation of distributions;
. Particle transport simulation; nuclear cross sections; particle histories; applications of Monte Carlo transport;

. Example: Simulation of penetration of neutrons through shielding.

. From mappings to linear optics; the concept of lattices;

. Transfer matrices and periodic solutions; propagation of linear optics parameters;
. Classic optical systems: the FODO, the double-bend achromat;

. Matching and optimisation; penalty/objective functions;

. Hill-climbing methods: Cauchy's method, Nelder-Mead, simulated annealing;

. Variables and constraints; under- and over-constrained problems;

. Example: MAD8 matching of FODO Twiss values;

. Multiple-configuration methods; genetic algorithms and evolutionary algorithms;
. A bestiary of codes; choosing the right code;

. Common pitfalls;

. Example: Particle tracking in MADS;
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Advice on Programming

The language you use does not matter, per se

— Numerical algorithms and methods are translatable (for the most part) from
one language to another

 However, you will want to use the most convenient language
— Pre-existing knowledge
— Compatibility with colleagues
— Availability of pre-written code (libraries, tools, programs)
* Typically, this means the following languages will be encountered/used:
— C++, Python, MATLAB
— Older codes will expose you to Fortran
— Locally quite a few people use Mathematica
— More on this later...

— | will show examples using MATLAB, but if you don’t have it use something like
Python (Anaconda or Canopy packages are recommended)
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Reminders: Variables in MATLAB

* (Reminder: A variable is a unit of data with a name,
which is available to the program)

* Simple variables

— comment = ‘This is a string’; % Can put comments
after the definition

= 1; % Integers

= 2.883; % Reals

= 1l.2*a + b; % Formulae

= 1; y = 2; % Multiple definitions per line

[1 5 2 6]; % vector(row vector)—square brackets!
= [1 5;3 8]; % 2x2 matrix

= [0 1+7]; % Expression in a definition

|
o B B 4 X Q 0 o
Il

= [y(2) 7 y(3)]; % Array indexing
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Reminders: Defining and indexing arrays

Xx = 1:2:10 % First:increment:last

X = 1 3 5 7 9

g = 1:4; % Row vector

h = g’; % Transpose makes column vector

i =11;3;4;5]; % Or define column vector explicitly

This is all quite different from other languages
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Reminders: Indexing

M
I

= [1.1 -2.2 3.3 -4.4 5.5];

x(3) is 3.3
x(1:2) is [1.1 -2.2]
x(1:2:5) is [1.1 3.3 5.5]

m=[1l2 3;-2 -3 -4;3 4 5];
m(6) is 4 — weird but true..
m(2,3) is -4

m(3,:) is [3 4 5]

m(:,2) is [2;-3;4]
m(l:2,3:4) is [2 3;-3 -4] 1
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Reminders: Functions

There are lots of functions and constants available to you:

Math: +-* [ AY)

Comparison: == < > ~= (these return 1/0 for ‘true’/’false’)
Logical: & | (also return 1/0 for ‘true’/’false’)
Numerical: Infj NaN pi

Functions: abs exp log log2 log10 mod real imag round sign
Trig: sin cos tan asin acos atan (etc.)

Specialised: besselj factorial legendre fft (etc.)

Use the Quick Reference Booklets

BIG TIP: Someone will probably have wanted to do the same job as you. That
function already exists, you just have to FIND IT.
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sin(x); %

<
I

plot(x,y):;

Hint: also try linspace

O:pi/20:2*pi;
Make some y values as a fn.

Reminders: Let’s plot some data

% Make some xX values
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Reminders: How about another one?

= 0:pi/20:2*pi; % Make some x values

N ¥

= (x-2).72+2; % Make some z
3 (x-2)"2+2 doesn’t work!

plot(x,z); % Over-writes first figure

\O

0o Figure 1

File Edit View Insert Tools Desktop Window Help
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Matrix and Array Multiply/Power — ‘a Gotcha’

This is something *very* particular to MATLAB:

* *is used for matrix multiplication

« ."is used for element-by-element (array) multiplication
* Mis used for matrix powers

« Mis used for element-by-element (array) powers

>> a = [1 2;3 4] >> a”2
a = ans =
7 10
3 4 15 22
>> a.”2
ans =
1 4
9 16

a2 is equivalent to a*a (matrix multiplication)
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...and for multiplication

>> b=[1 1;1 1]

[1 2;3 4] >> a*b

>> a.*b

PHYS20762 Lecture 1
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Some other plot types
bar(x,y) polar(x,y)

eno Figure 1 10600 Figure 1
File Edit View Insert Tools Desktop Window Help | ] File Edit View Insert Tools Desktop Window Help
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* (Use the Quick Reference Bookléts)
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What is a Numerical Method?

A numerical method is an algorithm that allows you to solve a problem
numerically. Nowadays this is done on a computer

— usually using some iterative procedure.
 Examples:
— Solving systems of equations
— Finding roots of equations (esp. non-linear)
— Solving ordinary differential equations/partial differential equations
— Monte-Carlo simulation of physical systems
* During numerical analysis, we must be aware that our predictions may be
different from real system, e.g. to what accuracy can we believe them?
— Round-off error
— Range error
— Truncation error
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Representing Numbers in Computers

Normally, computers store individual floating-point numbers in either
— Single precision (4 bytes/32 bits)
— Double precision (8 bytes/64 bits)/binary64 — e.g. default in MATLAB
— Ifyoudefinea = 0.02; then a will be in double-precision format
A floating-point number is represented by a significand and exponent

Significand (incorrectly) previously called mantissa

— mantissa still used very widely 1 6 X 1 O — ].9

VAN

Sign (0 or 1) Significand Base Exponent

‘\~\\§i l)(}
— X X
/ n ( m m\ Exponent

1 b|t 52 bits 1
Number

Significand Base (2 in double-precision)
(binary number in double-precision)
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How accurate are stored numbers?
e Accuracy is determined by the number of bits in the significand:
— Double-precision accuracy is about 16 decimal pIacesl _ L ~ 1 x 1016
bl 252
— Single precision accuracy is about 7 decimal places ll _ L ~1x%x107
b 223

* Round-off errors can be very significant:
— ‘Subtraction of similar numbers’ problem

1020 - . ,
This immediately gives
(34 10729) — 3) catastrophic round-off error
[ | T ]

Cannot be represented with 16 sd

>>107(-20)/((3+107(-20))-3) gives Inf (inifinity) instead of 1
— Try it!

* Matlab has variable eps that gives lower bound on accuracy

eps = 2.2204e-16
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Round-Off Error

Example: Round-off error when calculating derivatives

flx+h) - f(z)
h
= | fr(a) — Leth=1(@)

/N

Exact Derivative Approximation

h— 0

An optimum value of h is often around
h~10"%

But, it depends on the problem!

2

Example: f(z) =2z

(x + h)? — 22

A(h) =2z — ,
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Range Error

Range errors occur when you use a number outside of the exponent range

— Largest representable number:
2:t2(lq_1) ~ 10i38

— Single precision: lg =38

l, =11

. q
— Double precision:

Exceeding the single precision range limit is not difficult in physics

Ameoh?

apg =
Mee?

— But, we would (without thinking) calculate the numerator and denominator

Smallest representable number: 2

o—(g—1)

_9llg—=1)
9 2

ziz“q—l) ~ 10308

1D

© 5.2 x 10711

separately in code: Ameoh? ~ 1.24 x 10778

mee? ~ 2.34 x 1078

— Solution: use unit scale appropriate to the problem!

well within single precision limit
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Truncation Error

Suppose we need to find the first derivative f'(z) = ’1111% flz + hf)a — f(z)

We have seen that h cannot be chosen too small because of round-off error

Therefore f'(x) = flzt h})b mEAC) Rp—

Can we find an expression for the error?
Consider the Taylor expansion f(z + h) = f( )+ hf'(z) + = h2f”( ) +
(equivalently) f(z + h) = f(z) + hf'(z) + h2f”(§) where z < ¢ <z +h

h) — 1
Therefore [f'(z) ~ fle t ,)L i) _ Ehf”(x)

1
ihf”(m) ~ O(h) is called the (local) truncation error
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Numerical Integration

Now we are in a position to perform numerical integration

We will consider a universal equation of motion, and look at the simplest
method we can imagine. This will turn out to be Euler’s Method

Before we do that, let’s picture what we are doing:
f(z) = 2*
f(z+h) = f(z) + hf'(z)

After n steps, we have effectively
calculated the definite integral

nh
/ 2xdx f ’(33 ) =2z
0

100"

This is a brief overview: for more detail see e.g. MIT OpenCourseWare: https://www.youtube.com/watch?v=X5-ucBtneVM
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Euler’s Method

dv dx
— = a(z, t) = v(t) (2 equations, not 1!)

Using the definition of numerical derivatives, we can write

v(t+ h) —v(t))
h

z(t + h) — z(t))
h

Multiplying through,
v(t +h) =v(t) +h-a(z(t),v(t) + O(h?)
z(t+h) = z(t) + h-z(t) + O(h?)
Re-writing in iterative notation,

+O(h) = a(z(t), v(t))
(forward derivatives)

+ O(h) = v(t)

Un+1:Un+h'a'n
mn—{—l:xn"‘h'vn

Choose h and some initial conditions, and off you go!
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Higher-Order Methods
An easy way to improve on Euler’'s method is to use one extra
term in the Taylor expansion for the derivative. This is Heun'’s
method:
Un+1 =vn + h-ay
h? 3
xn+1:mn+h-vn+7-an error ~ O(h”)
/ 1 (dt)2
(cf.) z(t+dt) =z(t) +z'(t)dt + =" (t) 5
Verlet's Method uses the concept of centred derivatives:
fE+h)—ft—h) 1,
/ _ . "
— =q _— =
dt2 dt f(t+h)+ f(t—h) —2f(¢ 1
Py = SEEWEICD) 220 L ya g

re-arranging the 2"9 of these gives

Tpt1 = 2Ty — Tp—1 + h2 . an + O(h4) Note: quartic in h!

Wow! This should be much more accurate!
But notice that (n+1) term requires n and (n-1) terms — not self-starting.

Must use Euler method for first step.

+ ...
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>\L
=2 Solvable system — Spring-Mass with Damping
SR,
>5 . .
Cc General SHM with damping
D Nq
U=
oy
= O | mi=-bx—kx+ F(t)
b k F(t)
a(t) = —Ev(t) - Em(t) +— =
b k F(t)
Op = ——Up — —Tp + ——
m m m
Solvable if:
F(t) =0

(and for certain functions)

b k
Euler An = ——Un — —Tp
m m
Untl =Un+ h-an
Tnt1 = Tn +h-vy
Imp. Euler g, = —Evn — E:cn
m m
Untl =Un +h-an,
1
Ln+1 =Zn+h- vy, + §h2'an
Verlet Tni1=A-Tp+ B Tpn_1
(2m — kh2) (bh — 2m)
A=2 —
D B D
D =2m + bh

Q: Why are we looking at an analytically solvable system?
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Simple Harmonic Motion: Exact Solution

0 4 m  4m?

Quality factor () = “o = k_m
v Vb2
2

Critical damping is defined as w = ( , therefore wy = fYZ andso b =2VEkm

Substituting into equation for quality factor gives Q =

DN | =

ber = 2Vkm b= %bcr Q=
Q
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Analytic versus numerical simulation h=1s
Q=27.1109; w=0.553189
4+
2+
h = 0.5s
o0
-2}
B h =0.2s
o s 10 15 20
t/s
Analytical solution
The important point here is to test your algorithm h=0.1s
in the case where the solution is analytically
known: then you know how good it is.
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Numerical Integration Over Long Times

h=0.1s

1 1
0 >0 100 150 200

Artificial addition of energy to system — numerical artefact.
These integrators are non-symplectic, one of them badly so!
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No damping

Question: How would you check the green one was really constant amplitude?
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Energy Errors in Euler’s Method

lgnoring for simplicity an initial velocity, we may write an expression for the
damped SHM motion

z(t) = Aebt/?m cos(\/ — — 4—2 )t)
m

The energy is just
1 1

E(t) = Eka:Z (t) + §mv2(t)

Substituting and expanding out, we get (eventually)

2_,—bt/m M2 _ h2
E(t) = A 68 (4km + b* cos( Vkm —b t) + by/4km — b2 sin( Vakm —b t))

m m m

Hint: can do this expansion straightforwardly using Mathematica or other computer algebra system
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Euler’s Method with No Damping

Start by writing out expression for Euler step

Tptl = Tp+ hvy,

Un+1 = Un — H-’En

Then substitute into expression for energy

1 1 1 1

Eny1 = Eka:i + 5mv,‘i + %hzkzmi + §h2kv§
and collect terms to give
k
Eni1=E,(1+ —h?
m

In other words, our simulation predicts a steadily increasing energy!
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The Euler-Cromer Method
Let’s make a slight change to Euler’s method
In+1 = In = h'Un_|_1
v = Un — @.’E
n+1 — n m n

(note: you will have to put the damping part back in yourself!)

Expanding out the expression for energy again, we obtain (eventually)

1., k%z? k2x., v k3 x2
En — E‘n T R2M 'n 2y 337 mn¥n 4 n
+1 2h ( — k"Un) h — + h o2

The second term averages out over one oscillation. The result is that the
overall energy is conserved.

But... there are oscillations about this average, compared to the true value of
the energy. Better than Euler though!

Euler-Cromer is a Symplectic Integrator, i.e. it is energy-preserving
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Visualising Integrators
A=1,k=10,b=0.1,m=1
20
1+
g o0
-1}
S R S B B
t/s
Time Plot

v /ms™!

Phase Space Plot
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Things you ought to find out for yourself

Order of the method
Symplectic vs non-symplectic integrators

Most people use:
— RK4 — 4th-order Runge Kutta (non-symplectic)

— 4th-order Yoshida integrator (symplectic)

There are many such methods, sometimes with overlapping names

— RK2 = Heun’s Method = Improved Euler

We haven’t covered some things yet. These include:

Butcher Tableaux (simple way of classifying methods)
Stability of methods; stiffness

Extension to multiple dimensions

Simplifying methods, e.g. mappings

Nonlinearities and chaotic dynamics
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Main points

We pay attention to those quantities in a problem which ought to be
conserved — this is a way of testing our algorithm/code

We try to test a code against a problem/situation with a known solution
— This concept is known as validation

Validation is a very important and very under-utilised concept in
simulation

— All your simulations should be validated in some form
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Introduction to mappings

* Alinear SHO without damping has a known analytic solution — we don’t
need to integrate it

* Instead, we can calculate the state of the system at some later time using
an evaluation of that solution

— This is a form of mapping

— We of course find that linear
systems are quite dull! o

— Let’s look at some nonlinear g 0
systems g

..................
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The Chirikov Map

e The Chirikov map is akin to a kicked pendulum

— It has a linear part described by a mapping (from one kick to the next)
— And it has a nonlinear kick (of some form)

Boris Chirikov
(1928-2008)
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Example: Nonlinear SHM
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of Manchest

Some nonlinear spring with damping

mi = —bz — kx — kox?

b ko ke
m m m

Since the acceleration can be
expressed at a given time, it may
be used within an integrator just
the same as if the system was
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Project 1

* Project 1 Tasks

— Write Euler/Euler-Cromer and at least one higher-order method (e.g. RK4) for
integrating a linear SHO with damping

— Validate your simulation and present suitable results and visualisations

— Examine the nonlinear oscillator and obtain interesting results; present with
suitable parameters



